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ABSTRACT

An experimental study of low Reynolds number drag on laboratory models of
dendrite fragments has been conducted. The terminal velocities of the dendrites
undergoing free fall along their axis of symmetry were measured in a large Stokes
flow facility. Corrections for wall interference give nearly linear drag versus
Reynolds number curves. Corrections for both wall interference and inertia effects
show that the dendrite Stokes settling velocities are always less than that of a sphere
of equal mass and voIume. In the Stokes limit, the settling speed ratio is found to
correlate well with the primary dendrite arm aspect ratio and a second dimensionless
shape parameter which serves as a measure of the fractal-like nature of the dendrite
models. These results can be used to estimate equiaxed grain velocities and distance
of travel in metal castings. The drag measurements may be used in numerical codes
to calculate the movement of grains in a eonvecting melt in an effort to determine
macrosegregation patterns caused by the sink/float mechanism.



1. INTRODUCTION

Oneof the most detrimental forms of segregation in metal castings is macrosegregation caused by

the sinking (and floating) of free dendrites, equiaxed grains and inclusions. Movement of solid grains

is fundamental to the formation and distribution of the equiaxed zone in castings[l.2,a]. The processing

of monotectic alloys and particulate metal-matrix composites may also be limited due to Stokes flow

and the redistribution of solid phases.[ 4] During solidification of an alloy the solid under formation is

of a different composition than the liquid, provided the partition coefficient is not unity. Movement

of either of these phases is required for the development of macrosegregation. The rate and manner

by which the free solids settle will influence the amount and distribution of segregation. An

understanding of this settling behavior is a necessary prelude to the understanding and possible control

of the solidification process.

Segregation driven by a sink/float mechanism in the form of "kishing" of graphite flakes is

common in the casting of cast iron[H and is a factor in the solidification of Fe-C-Si alloys in low

gravity,[ s] and other eutectic systems.[ 6.7] Macrosegregation caused by this type of mechanism can be

quite severe.[ 3.8.9] Free, unattached grains are produced by breakage of dendrites during pour

casting[ a] by partial remelting,[ 6.7] by mechanical disturbances such as stirring or vibration,[ '0-12] and

by heterogeneous nucleation of grains in areas of high liquid fraction. Attempts have been made to

use Stokes' law to assist in the analysis of segregation caused by settling processes.J6.13] however a

detailed study of the effects of grain geometry has not been reported.

The size and shape of settling dendrite fragments can be estimated from postsolidification

microstructu_s. Three-dimensional dendrites can be thought Of as simple constructions using

cylindrical elements such as those shown in Fig. 1. The relative size and spacing of the primary and

secondary arms are representative of numerous observations of real dendrite microstructures in Pb-Sn

[14 Is]and are consistent with other morphology studies using Pb-Au and succinonitrile-acetone. , The

nearly cylindrical dendritic fragments in Pb-Sn have diameters on the order of 1-2 X 10-sin and

lengths in the range 2.5-8.0 X 10-s m[9]. These values were used to bound the aspect ratios of

dendrite models studied here. Secondary arm spacing and average dendrite diameter measurements in

Pb-Sn were used with the results of Tewari[ 14] to yield a parabolic tip radius to dendrite diameter

ratio of 0.27. This relation was used to insure consistency between the shapes shown in Fig. 1, recent

morphology studies, and measurements made in the Pb-Sn system.



An estimate of the dendrite Reynolds number in a casting can be obtained [cf. Eqn. (12)] by

assuming a spherical dendrite of diameter d- 2a fails through the melt at its terminal velocity

U t -2ga2(ps -p)/9#, where g is gravity, Ps is the density of the alloy solid, and p and # are the

density and viscosity of the alloy melt, respectively. For a Pb-dendrite in a near eutectie alloy

(62 wt.% Sn) with d - 4 X 10 -s m, Ps " 1.13 X 10_ kg/m s, Pt " 8.2 X 103 kg/m 3, and

# _ 3 X 10 -s kg/m-s one finds Re _ 0.05. This may be regarded as an upper bound here because the

maximum observed radius was used in the calculation, and perhaps for dendritic systems in general

since Pb--Sn is characterized by a large density difference between the solid and melt. In any case,

the expected Reynolds numbers are quite low and in many instances the dendrite may be considered

to be in the Stokes flow regime. Also, owing to the small inertia effects, a free dendrite reaches its

terminal velocity almost instantaneously, or at least in a time that is negligibly small compared to the

average suspension time in any realistic casting system.

It is evident that the settling process can be very complicated. When a mold is filled the initial

flow is highly turbulent. After the turbulent flow subsides, the movement of individual dendrites will

be affected by neighboring dendrites and solid surfaces and collisions may take place. Even at low

solid fractions, the motion of a single dendrite will be affected by convection currents induced by

unstable thermal and concentration gradients in the liquid melt. In all eases the dendrite settling speed

will depend on the orientation of its central axis with respect to the gravity vector. In this paper we

do not address the above-mentioned complications, but rather focus attention on the settling velocity

for dendrite models falling at steady terminal speed along their central axis at low Reynolds number in

an unbounded fluid. Hence the present investigation represents a preliminary study of the very

complex problem of dendrite motion in realistic solidification processing conditions. Introductory

remarks given in Section 2 are followed by a description of the experimental apparatus and

measurement procedure in Section 3. Drag and settling speed measurements reported in Section 4 are

analyzed in terms of a nondimensional length scale which characterizes the fractal-like nature of the

dendritic shapes. A discussion of results and concluding remarks are given in Section 5.

2. PRELIMINARY REMARKS

The drag on a sphere of radius R settling at constant speed U in an unbounded liquid of viscosity

# in the limit of zero Reynolds number is given by[ 16]

D = 67r#RU. (I)



One immediately observes that the characteristic force (_RU) in Stokes flow is proportional to the

viscosity. Thus a proper drag coefficient is obtained by normalization of the drag with #RU and not

with a dynamic pressure proportional to the density as in a high Reynolds number flow. Stokes flow

theory has been extensively developed for flow over long slender bodies and for flow past slightly

deformed spheres, but results for more complicated shapes must be obtained by numerical integration

of the governing equations of motion or by direct experimentation. In either case it is common

procedure to report zero Reynolds number results in the form of the settling speed ratioDT]

KS - UJtJ , (2)

where Us is-the Stokes velocitY: of tile-test object=and U r is the Stokes velocity of a reference sphere.

The Stokes velocity is the settling speed of an object falling in an unbounded fluid in the limit of zero

Reynolds number. The reference sphere is usually considered to be a sphere with mass and volume

equal to that of the test object; in other words, it is the sphere formed by melting down the test

specimen. When a body fails in a fluid at constant terminal velocity, its drag is equal to its weight

less the buoyancy force of the displaced fluid. The submerged weight of a dendrite is therefore the

dendrite drag in the present experiments. Since both the object and the reference sphere have the

same weight and volume, they have the same drag. Hence the drag D on the object computed from

Eqs. (1) and (2) may be written

D - Dr - 67r#arU r - 61r#arus [KS , (3)

where D r is the reference sphere drag, U r is its Stokes velocity, ar = [3V/41r]_/3 is the radius of the

reference sphere computed from the solid volume V of the test object. The settling speed ratio

computed from Eq. (3) is then

KS .- 67r#Usar]D. (4)

The goal of this study is to obtain the low Reynolds number variation of drag and the Stokes settling

speed ratio KS for the model dendritic fragments given in Fig. 1. An accurate determination of KS

thus depends on an accurate measurement of the parameters on the right hand side of Eq. (4).

It is clear that real experiments cannot be carried out at zero Reynolds number, and one must

always be concerned with wall interference effects in any finite size experimental facility. These

latter blockage corrections must be made to obtain the Reynolds number variation of drag in an



unbounded fluid. The Stokes settling speed ratio KS is then obtained after making an additional

correction for the effect of inertia in the finite Reynolds number experiments. The procedure for

taking into account these corrections is presented in the following section.

3. EXPERIMENTAL SETUP AND MEASUREMENT PROCEDURE

A. Experimental Apparatus

The experiments were carried out in the Stokes facility reported in Lasso & Weidman.[ Is] The

tank is composed of a thick aluminum base supporting vertical plate glass sidewalls 0.91 m high

forming a square cross section L - 0.61 m on edge. The large test facility was designed to permit the

use of centimeter size test objects and yet achieve minimal sidewall blockage effects. The test facility

is particularly well suited for objects of complicated shape which need to be of sufficient size to keep

close tolerances on machining and construction. The tank is filled to a height of 0.85 m with 0.34 m s

of Dow Corning 200 silicone oil with a nominal viscosity of 2.5 X l0 -s m2/s at room temperature.

Currie and Smith[ 19] have shown that silicone oil at this viscosity is Newtonian for shear rates less

than 150 s-1. well above the maximum shear rate 20 s "_ estimated for the experiments reported here.

The apparatus is equipped with a laser-triggered time interval measuring system accurate to 0.001 s,

designed after the one used by Stalnaker and Hussey.[ 20] The release mechanism mounted on top of

the tank consists of a ring supporting three Airpax Model K92121-P2 linear actuators located 120 °

apart, each equipped with needle-like prongs that can be radially positioned, independently or in

unison, by means of an electronic controller. The centered prongs serve to align and hold the dendrite

model along the tank's central axis. Subsequently, the assembly is lowered into the oil and the test

object is released.

Prior to any experiment the silicone oil in the tank is mechanically mixed to overcome any

temperature stratification induced by the ambient temperature gradient in the laboratory. Three hours

after mixing, the temperature is found to vary less than 0.05 °C in the central region where tests are

conducted.[ Ig] An ASTM-56C Fisher mercury thermometer with 0.02 °C resolution was used to

measure the fluid temperature in the center of the test region before and after a series of tests. All

dendrite models were released along the tank centerline about 0.04 m below the free surface and fell

approximately 0.23 m before intercepting the upper horizontal laser beam which triggers an electronic

timer. The dendrite model falls an additional 0.2939 m before intercepting the second laser beam

which records the transit time between the focused beams. The test object then settles to the bottom
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of the tank approximately 0.28 m below the lower laser beam. Lasso and Weidman[ 18] found that test

specimens of the size and weight used in the present investigation will be at their constant terminal

speed during transit between the laser beams.

The variation of the fluid density p(T) and viscosity #f'l') was measured over the range of

temperatures incurred in the experiments. Details of these measurements are given in Appendix A.

Least-squares fits to the data are given by

p = 1006.13 - 1.41 T (kg/m 3) (5)

# ,, 3.8216 - 0.05367 T (kg]m-s) (6)

valid in the temperature range 20 °C < T < 27 °C.

Prior to weighing, all objects were cleaned in an ultrasonic bath and then allowed to dry at room

temperature. Dry weight measurements were made with a Mettler Model H54 analytical balance

having a resolution of _.01 rag. The drag force was obtained by measuring the effective mass of the

object immersed in a constant temperature bath of silicone oil and multiplying by the local

gravitational acceleration (g - 9.79608 m/s2). The drag was corrected to the temperature of the tank at

the time of experimentation using[18]

D ,, Do - gV _TT(T - To) - Do + 1.41 gV(T - To), (7)

where D is the drag corrected to experimental temperature T, and Do is the drag at temperature T o.

A direct calculation for the surface area A and volume V of each dendrite is given in Appendix B.

B. Inertial and Blockage Correction Procedure

Eventhough the experimental facility is large, corrections for wall interference (blockage) effects

are essential. Since the velocity in Stokes flow decays as the inverse power of the radial coordinate

from the test object, a blockage ratio as small as 3% can induce a 10% error in the settling speed

measurement from that in an unbounded fluid. Furthermore. all test objects have a finite Reynolds

number and inertial corrections to obtain Stokes drag must also be made. These inertial effects

typically become noticeable when the Reynolds number of the test object exceeds 0.1. Figure 2

depicts the essential features of the inertial and blockage correction procedure described below. The
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method equates the test object to a sphere of equal drag (effective weight in the test fluid), also having

a zero Reynolds number blockage correction equal to that of a spheroid whose aspect ratio is

determined by the maximum vertical and horizontal dimensions of the object. Use is made of the

accurate experimental data of Sutterby[2q who measured wall interference and inertial corrections for

spheres falling along the central axis _of a concentric cylinder. Sutterby°s correction constant K is

defined as

K - U_/U_ (8)

where U m is the measured settling velocity in a cylindrical tank and U s is the Stokes velocity of the

sphere. In order to make use of these results one must find the equivalent diameter, deq, for our tank

of square section. The analysis of Happel & Bart[ 22] gives this relation to be

deq - I.I0659L, (9)

The specific steps comprising our generalized procedure for determining the wall interference and

inertial corrections for axisymmetric or nearly axisymmetric bodies are as follows.

(1) The maximum length I and maximum breadth b of the object [Fig. 2(a)] are determined.
The length _ is the maximum dimension of the body parallel to the vertical axis of free fall.

(2) An equivalent spheroid [Fig. 2(b)] with semi-axes 112 and b/2 along the vertical and
horizontal axes, respectively, is constructed. This spheroid is an intermediate step that
approximately accounts for the overall three-dimensional shape of the test object.

(3) The spheroid fineness ratio _fo and its blockage ratio b/d e is computed Using these_q
geometric shape parameters, Table III of Wakiya[ 23] is interpolated to obtain the
corresponding wall correction factor Kw. This is the blockage correction for a centrally
falling spheroid that has the same fineness ratio (_]b) as the experimental specimen. At this
point finite Reynolds number blockage effects are approximately determined.

(4) For the given value KW, the Re- 0 data in Table I of Sutterby[ 21] is quadratically

interpolated and Eq. (9) is used to obtain the sphere blockage ratio d/deq. This blockage ratio
corresponds to that of a sphere [Fig. 2(c)] with diameter d having the same zero Reynolds
number wall interference effects as the equivalent spheroid.

(5) This sphere becomes the equivalent sphere when it has the same drag as the test object.
The Reynolds number. (Re)ea, corresponding to this drag is estimated from the Stokes flow
equation (Re)eq -dSgp(ps-P)/18# 2, where p is the liquid density and Ps is the density of the
solid dendrite. The equivalent sphere [Fig. 2(c)] now has the same drag and approximately
the same zero Reynolds number blockage correction as the original test object [Fig. 2(a)].

(6) Using the blockage ratio d/d e and Reynolds number (Re)eq, Sutterby's[ 21] data is.q .
interpolated to obtain the combined inertial and wall correction constant K for the test object;



then the Stokes settling velocity U s is computed from Eqn. (8).

It must be emphasized that the above "equivalent sphere method" correction procedure is approximate.

However, a comparison of measurements with theoretical results for solid cylinders[ 18] indicate that it

works well for axisymmetric test objects of moderate aspect ratio as in the present investigation.

C. Dendrite Models

Four models of each dendritic shape sketched in Fig. 1 were constructed in order to cover a range

of Reynolds numbers. Small and large models were each machined from Delrin and ABS

(acrylonitrile-butadiene-styrene). Delrin is heavier than ABS, so the drag and Reynolds number of the

Delrin models are significantly larger than that of their ABS counterparts. Knowledge of the densities

of the plastic models is not required in the data reduction. The models fall into two groups, uniaxial

(U designation) and triaxial (T designation), and each group consists of branchless and branched

models. The number immediately following the U or T designation denotes the number of sets of

secondary branches. We distinguish between small and big, light and heavy geometrically similar

models with letters S and B, L and H, respectively. Designation suffixes A, B, and C pertain to

different primary rod aspect ratios I/a within a common group. The physical dimensions of each

model are presented in Table I. Models for groups UOA, U2, U3, TOA, TOC, Tl, and T2 were

constructed to simulate actual dendrite shapes observed in metal alloys. Models for groups [JOB and

T0B were made at a later stage and tested to better understand trends in the experimental data.

Models Ul were constructed at the last moment by removing the smaller set of secondary branches

from two U2 models. In the end. a total of 34 model dendrites were constructed and tested.

4. PRESENTATION OF RESULTS

Although the model dendrites were released with their primary axis of symmetry aligned with

gravity, they sometimes tilted and rotated for reasons discussed in Lasso & Weidman.DS] Data was

taken only if the central axis of a dendrite model exhibited a maximum declination of 8 0 from vertical

and in most cases the angle of declination was less than 3o. The measured data for each dendrite

presented in Table II include its dry mass M, the test temperature T of silicone oil, the dendrite drag

(submerged weight) D at temperature T, and the measured terminal speed Um. The next four columns

list Kw. d]deq, (Re)eq and K used to determine corrections for blockage and inertia effects as outlined

in Section 3B. Next comes ar, the radius of the sphere formed from the volume of the dendrite model,

determined directly from the buoyancy measurements. The final two columns list the settling speed

ratio KS and the dendrite Reynolds number defined as



Re-, _ (10)
#

where U_o is the measured settling speed corrected only for blockage effects, vlz., Uoo = KwUm,

The dendrite models may be distinguished by type (uniaxial or triaxial), complexity (the number

of branch sets, with each set comprised of four orthogonally intersecting arms), and by the aspect ratio

of the primary rods. Important geometric characteristics describing the models are given in Table III.

The first column gives the designation for the dendrite models and the second column lists the average

aspect ratio l]a of the vertical rods for each group determined from the dimensions in Table I. The

next two columns give the volume and surface area of each dendrite computed from the results in

Appendix B using the measurements in Table I. The following column gives a r determined from the

volume calculation in Appendix B, and one should note that these results agree well with the

corresponding values for ar given in Table II obtained from the buoyancy measurements.

The Reynolds number variation of dendrite drag for all test specimens is plotted in log-10g form

in Fig. 3. It should be mentioned that in these drag curves, both the drag and the Reynolds numbers

have been adjusted to a common temperature T = T r = 24.4 °C, necessary for a consistent comparison

since the drag has not been nondimensionalized. These values of D (Tr) and Re (T r) are listed in

Table III. We note that the data for model U1 was obtained using a different silicone oil with

kinematic viscosity v = 2.41 X 10-3 m2]s (@ T r) and its Reynolds number was made consistent via the

equation Re2 = (vl#Jv_ Rel. Individual drag curves for each model are presented in Fig. 4 with

quadratic least-squares fits through the origin. Error bars represent the rms deviation of repeated

(two to three) measurements. The error range is because of the scatter in the fall time which varies

with dendrite declination from vertical (< 8°). The curve fits in Fig. 4(a) are all closely linear,

attesting to the fact that inertia effects are unimportant when Re < 0.1. Curve fits to the higher

Reynolds number data in Fig. 4(b), on the other hand, do exhibit slight nonlinearity. For example, the

dashed line for dendrite T0B is a linear fit through the origin for the lower data point, while the

quadratic fitted curve exhibits a clear rise above the linear drag line. Each curve in Fig. 4(b) shows

that inertial effects first become apparent for these dendrite models when Re > 0.I, approximately.

However, even if the Reynolds number is as high as 0.4, the results in Fig. 4(b) show that only a small

deviation from Stokes drag behaviour on the order of 5-10% would be encountered. Our choice of

weights and sizes of the model dendrites did not uniformly span the range of Reynolds numbers in

each group; the Reynolds number for two models (SH and BL) are nearly the same. The close

correspondence between the values of drag for these widely disparate (but geometrically similar)

models of nearly equal Reynolds numbers provides validation of Reynolds' similarity law. Thus the



presentresultsarevalid for any dendritemassof similar geometryas long as it falls within the range

of Reynolds numbers tested.

The average value of the Stokes settling speed ratio KS computed from Eq. (4) for each of the ten

dendrite groups are given in Table III. KS is, by definition, Reynolds number independent and thus

depends only on the aspect ratio of the axial rods and the complexity of the dendrite configuration.

As a measure of the fractal-like nature of the dendrites, we introduce the shape length scale

L s ,, 3V/A which decreases with increasing dendrite complexity. This choice of length scale is

motivated by the fact[ 24] that the Stokes drag of a sphere is one-third volume dependent (pressure

drag) and two-thirds area dependent (viscous drag) and hence the Stokes drag on bodies of greatly

varying volume/area ratio is expected to depend on this quantity. The length scale is made

nondimensional by ar so that the parameter Ls/a r takes on the value unity for a sphere and decreases

with increasing dendrite complexity. Indeed "l', this parameter is not new since Wadell[ _5] introduced it

nearly 60 years ago calling it _, the "degree of true sphericity", defined as the surface area of a

volume-equivalent sphere divided by the surface area of the test particle and hence _ - Ls/a r. The

calculated values of L s and the average dimensionless shape parameter ar/L s (-, _-_) are listed in

Table III. Figure 5 gives a plot of the settling speed ratio KS as a function of ar/l., s with rod aspect

ratio l/a as a parameter. Circles and triangles correspond to uniaxial and triaxial dendrite models,

respectively, and the open symbols refer to branchless dendrites while the closed symbols denote

branched systems. Again vertical error bars represent the rms deviation in repeated measurements.

The data falls neatly into two groups, triaxial and uniaxial, with the settling speed of the triaxial

dendrites consistently lower than that for uniaxial dendrites of the same aspect ratio. Clearly, the

horizontal rods of the triaxial models offer more resistance and result in a lower value of KS. The

effect of secondary branches at fixed aspect ratio is shown by the dashed lines which follow t/a _ 4

for the uniaxial models and l/a---8 for the triaxial models. In both cases the settling speed ratios

appear to asymptote to constant values as the branching patterns become more complex. The

asymptotic values are approximately KS- 0.8 for uniaxial models with l/a- 4 and KS _ 0.6 for

triaxial models with l/a _ 8. These results show that the more realistic dendrite shapes (triaxial with

secondary branching) have settling speeds 40% lower than spheres of equal mass.

Following Heiss and Coull,[ 26] an alternative procedure to correct for inertia effects is to

extrapolate the drag curves back to zero Reynolds number. We define the zero Reynolds number drag

"l'The authors are indebted to Mr. Sandeep Ahuja for bringing this fact to our attention.
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coefficientCd as

d(Re) Re = 0

Cd =' 67r#v (I I)

and note that the numerator in this expression is readily determined from the quadratic least=squares

fits to the individual drag curves in Fig. 4. This direct approach may constitute a more accurate way

of determining Stokes drag results because only the blockage correction factor Kw is used and the

slope calculation emphasizes the data in the linear regime Re < 0.1 where K w is small (cf. Table ID.

The drag coefficients are listed in Table III and plotted as a function of the dimensionless shape

parameter in Fig. 6 with the same definitions for the symbols as in Fig. 5. The branchless uniaxial

and triaxial data exhibit a linear variation drag coefficient with ar/L s. Also, as expected, the drag

slope of the triaxial models is greater than that of the uniaxial ones. The effect of adding secondary

branches is to move along the dashed curves to asymptotic values C d m 1.2 for uniaxial dendrites of

aspect ratio I/a _ 4 and C d --- 1.7 for triaxial dendrites of aspect ratio _t/a -_ 8. In the limit Re -,, 0.

Uoo -_ Us, and Eq. (3) gives D = 67t#vRe/KS. It then follows from Eq. (12) that Cd = (KS)-:. Thus the

extrapolation procedure for calculating the zero Reynolds number drag coefficient C d provides an

alternate method for calculating KS. The consistency of the two independent determinations of KS is

seen in Fig. 7 where a plot of C d versus (KS)-: reveals a straight line nearly within experimental

error.

5. DISCUSSION AND CONCLUSION

Plastic dendrite models patterned after the shapes of real dendritic fragments observed in

postsolidification microstructures of metallic alloys were constructed for testing in a low Reynolds

number experimental apparatus. The settling speeds of 34 models conforming to four uniaxial and the

three triaxial configurations of varying aspect ratio were measured. The blockage-corrected drag

curves for these models given in Fig. 4 exhibit noninertial behavior when Re < 0.1 and inertial effects

become evident when Re > 0.1. Results in the Stokes flow limit of zero Reynolds number have been

derived by two independent means. In the first method, the ad hoe procedure of Lasso and

Weidman[ Is] is used to estimate inertial corrections to determine KS, the Stokes settling speed ratio

defined by Eq. (2). In the second method, the blockage-corrected drag curves were used to determine

the zero Reynolds number drag coefficent given by Eq. (11). itself equivalent to the inverse of KS.

The consistency of the two approaches is verified in Fig. 7, but it is believed that the direct
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extrapolation of the drag data provides somewhat more accurate results when sufficient data at low

Reynolds number are available. Figures 5 and 6 show that the Stokes results for these complex

dendrite fragments correlate well with the dimensionless shape parameter ar/L s.

The results in Figs. 5 and 6 show that the settling speed KS and drag coefficient C d for dendrites

in real metal casting systems will have values significantly different from spheres of equal mass (unity

for both KS and Cd). In particular, at large ar/L s, uniaxial dendrites with l]a _" 4.0 have settling

speeds 20% slower than equal mass spheres and triaxial dendrites with l/a -ffi8.0 have settling speeds

40% slower. Figures 5 and 6 also show that secondary branching has profoundly different effects on

the uniaxial and triaxial dendrite models, The growth of secondary branches on uniaxial models of

aspect ratio I/a - 4 causes an immediate increase in the drag coefficient and concomitant decrease in

KS. Secondary branching on the triaxial models of aspect ratio l/a _ 8, on the other hand, exhibits no

discernible effect on the dendrite drag. The explanation for this difference in behavior is as follows.

The addition of secondary arms to the uniaxial fragments greatly increases the horizontal scale of the

dendrite and hence its drag. Further addition of smaller secondary arms do not increase the horizontal

scale of the fragment and offer little (if any) increase in C d. The slight increase in the drag

coefficient for branched uniaxial dendrites in Fig. 6 is most likely due to the increase in aspect ratio

of the models from 3.8 to 4.4. In the casg of triaxial dendrites, the growth of secondary branches is

observed to have virtually no effect on the drag coefficient, the slight differences in C a with

secondary branching again being attributed to the different aspect ratios of the primary rods. This is

due to the fact that secondary branching on a triaxial model does not alter its horizontal length scale

which is already set by the branchless configuration. It is possible that a more accurate set of

measurements would exhibit some slight change in the drag coefficient when secondary branches of

dendritic form are added to the basic triaxial stalk, but the measurements presented here suggest that

secondary branching on triaxial dendrites will not affect the settling speed ratio.

One must bear in mind that the foregoing results depend only on the Reynolds number of the

dendrite and its shape as characterized by the nondimensional parameters l]a and ar/L _. The

foregoing results may be used to estimate the settling rate of a low Reynolds number dendrite

fragment in a metal casting as follows. First the dendrite model shape most similar to grains observed

in the casting is chosen from Fig. 1. Next the values of the shape parameters _]a and at/I__ are

estimated through analysis of dendrite size and back of the envelope calculations for dendrite models

composed of mutually intersecting rods. The corresponding settling speed ratio KS is then found from

the results in Fig. 5. Finally, Stokes' law gives the terminal velocity

12



02)

where g is the the local gravitational constant and Ap is the density difference between the solid

dendrite and its liquid surrounding. (Note that the dendrite mass enters through the term Ap.) Thus

the values of KS provided in this study enable one to ascertain meaningful estimates of the velocity,

and hence distance of travel, for dendrite fragments and equiaxed grains in solidifying metal alloys

under ideal conditions in the absence of convection. In closing, however, we note that the drag

coefficient curves may be input into numerical codes to calculate the movement of dendrite fragments

in a convecting melt, and thereby obtain particle trajectories and settling times in more realistic

solidification processes.
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APPENDIX A: Density and Viscosity Measurements

The density of the silicone oil was measured using a Mettler/Paar model DMA40 digital density

meter. The measuring principle is based on the natural frequency of oscillation of a fluid-filled glass

U-tube. The mass, and hence the density, of the test fluid in the U-tube affects the natural frequency

of the oscillating, liquid filled U-tube. In practice the density is calculated from the equation

p = A(R 2 - B) (AI)

where p is the density in kg/m s, R is the digital readout of the instrument, and A and B are

calibration constants determined by taking readings for liquids or gases of well-known densities.

These constants were determined using air and distilled water as the calibration fluids. The density

meter was connected to a constant temperature bath regulated by a Yellow Springs Model 72

temperature controller. The bath circulates water at nearly constant temperature (+ 0.01 °C during

time of measurement) through a glass tube enclosing the vibrating U-tube. The absolute air pressure

in the room was measured to the nearest 0.5 Torr by means of an MKS Baratron Model 220BA

absolute pressure transducer. An analysis of sources of error gives a maximum density error of 0.05%

for densities near unity. The measured densities of the silicone oil over a range of temperatures are

presented in Fig. A I. Open and solid symbols correspond tO measurements made before and after the

18 month period of data acquisition, respectively. It is clear that the density is very nearly a linear

function of temperature over the range of interest and a linear least-squares fit shown in the figure is

given by Eq. (5) in Section 3A.

The absolute viscosity of the silicone oil was measured using a Model DV-II Brookfield Digital

Viscometer. Although not quite as accurate as a factory calibrated Cannon-Fenske viscometer used

for measuring kinematic viscosity, proper cone selection and experience showed that repeatable

measurements with error on the order of 0.5% is expected. Silicone oil viscosity measurements taken

before and after the 18 month period of the experiment are plotted in Fig. A2. The linear least-

squares fit shown in the figure is given by Eq. (6) in Section 3A.
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APPENDIX B: Calculation of Dendrite Volume and Area

The mathematical determination of the volume and surface area of the dendrite models is not a

trivial matter. Clearly. the total volume and area for a dendrite composed of intersecting cylinders

with hemispherical ends are less than the volume and area of the nonintersecting cylinders used in

their construction, and one needs to ascertain the common volume and masked area in regions of

intersection. Figure B1 displays two types of mutual intersections of three cylinders. In Fig. Bl(a) a

cylinder of radius R2 is symmetrically pierced by two orthogonally intersecting cylinders of smaller

radii R_. In Fig. Bl(b) three cylinders of equal radii 1_2 mutually intersect at the origin of the

Cartesian coordinate system. We write V)/2 for the volume of cylinder 1 displaced by cylinder 2;

A1/2 is the area of cylinder 1 masked by cylinder 2; etc. Note that in general A1/2 ¢ A2/).

Consider first the problem of the orthogonal intersection of a single cylinder of radius R_ along

the y-axis with a larger cylinder of radius R2 along the z-axis as shown in Fig. B1. The cylindrical

surfaces are described by the equations

x2 + z2 = R__, x2 + y== R22. (131)

The following expression for V_/2 may be integrated once to obtain

Io_ r x(z)Vl/==8 dz J0 y(x) dx = 4ll+4Rz 2I 2,
032)

where

1_i R2 -- -I1 = (R22 - Rl2)Rl 2 + (R22 - 2Rl2)z 2 - z4 dz = T [(R22 - Rl2) F(m) - (R2= - 2R] 2) F-Am)] (B3)

Rl 1joa,csinrJR'2-z [ dz -
4RIR2 2 [m-I/2 E(¢*lm) + (m - I) F(OIm)]. 034)

-- m

Here F(m) and F_,(m) are complete elliptic integrals of the first and second kind. respectively, with
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modulus m - RI2/R22. In Eq. (B4) _ - sin-lvrm and #" is defined through the relation

F(_lm) - m'/2 F($*lm). 035)

I_ was calculated by the change variables sin0 = JR: 3 - y2/R 2 and subsequent integration by parts

yielding an incomplete elliptic integral of the second kind with modulus greater than unity. Using

identities in Abramowitz & Stegun,[ 27] the result was rewritten in standard form with modulus less

than unity. Combining results one obtains the common volume for two intersecting cylinders as

4R2 3
V1/_ " _ [(1 - m) F'(m) - (1 - 2m) E(m)] + 4R2s [E(_*lm) + m-l/:_(m - 1) F(_blm)]. 036)

Consider now the computation of masked areas. Referring again to Fig. BI, the area of cylinder

R, masked by cylinder R2 is given by

f¢/2

A,p - 8 J0 .J(R.' - R, z) + R,2sin20, R,d0, - 8R,R. E(m)
(B7)

where 0, is the azimuthal coordinate for the smaller cylinder. The area of cylinder R2 masked by

cylinder Ra is given by

f

A2/1 " 8 []Rl 2 - R22sin202 R2d01 - 8R,R2 [m-l/2 FA#*Im) + m-l(m - 1) F(_lm)]
J0"

O38)

where 02 is the azimuthal coordinate for the larger cylinder and _ is defined above. Thus the total

masked surface area for two orthogonally intersecting cylinders is given by

AA,/2 " A1[2 + A2/1 " 8RtR2 [E(m) + m-q 2 FA#*Im)+ m-'(m - 1) F(_lm)]. 039)

The overlapping volume and area for three orthogonally intersecting cylinders, two of radii R,

and the third of radius R2 > Rs. may now be calculated. We note in Fig. 1 in Section I that the

smaller cylinders do not intersect each other outside the boundary of the larger cylinder. In this case

R, < R2]v/2. and the reduced volume due to mutual intersection is simply twice V1] 2. We denote this

volume as AVI[,/2, and hence

16



8R2 $ w

zXV'l'12 = T [(1 - m) F(m) - (1 - 2m) E(m)] + 8R2 s [E(¢*lm) + m-_/2(m - I) F(¢lm)]. 0310)

Similarly, the total masked area of the three intersecting cylinders denoted as LkA_/_/2 is simply twice

_A_/2, and substituting m - Rt/R2 into (B9) yields

t_Alill2 = 16R_ 2 [m 1/2 E(m) + E(¢*lm) + m=l/2(m = 1) F(¢lm)]. (1311)

Consider lastly the special case of three orthogonally intersecting cylinders of equal radii R as

shown in Fig. B2. The volume common to two intersecting cylinders can be determined by setting

R_ - R2 in Eq. 036) and taking the limit m -, 1 which yields

V2/2 - 16R2s13. (1312)

When a third cylinder perpendicularly intersects these two cylinders as in Fig. B2, the volume of the

third cylinder displaced by the other two is given by

0313)

The total displaced volume for three mutually intersecting cylinders of equal radii R2 is then

txV2/2/2 = %/2 + %12/2 = 8v/2R23- 0314)

The area of a single cylinder masked by the two other intersecting cylinders in Fig. B2 is given by

f _r/2

A2/2 " 8 Jlr/4R22 sin0 dO - 8_/'2 R22,
(BIS)

and the masked area of the three orthogonally intersecting cylinders is readily found to be

L_A2/2/2 = 3 A_/2 - 24_ R22. 0316)
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The volume and its surface area of a dendrite model can now readily be determined. Suppose the

dendrite is composed of m triple intersections of cylinders of equal radii R2 and n mutual intersections

of two cylinders of radii R_ with one of the larger cylinders of radius R2. The volume and surface

area of that dendrite is given by

V - ZVI,_ -m AV##2 - n AVI/a/_ (B17)

A = ZAI,_ - m AA##2 - n _AllI/2 (]318)

where ZV_,2 is the sum of the volumes and ZAz,_ is the sum of the surface areas of all the individual

nonintersecting cylinders of radii R_ and R2 which make up the dendrite. Extensions of this

methodology to dendrites with systems of smaller branches is straight forward.
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Model l a a' b b' b" c c' c"

U0A S 2.223 0.635 - - -
U0A B 4.709 1.270 - - -

U0B S 2.540 0.318 - - -
U0B B 5.080 0.635 - - -

Ul S 2.413 0.635 0.228 1.905 -
UI B 4.826 1.270 0.482 3.810 -

U2 S 2.413 0.635 0.228 1.905 1.466
U2 B 4.826 1.270 0.482 3.810 2.934

U3 S 2.794 0.635 0.228 2.032 1.905
U3 B 5.588 1.270 0.482 4.064 3.810

T0A S 2.540 0.956 - 2.540 -

T0B B 5.080 1.270 - 5.080 -

TOC S 2.540 0.318 - 2.540 -
T0C B 5.080 0.635 - 5.080 -

T1 S 2.350 0.318 0.122 2.350 0.732
Tl B 4.699 0.635 0.228 4.699 1.466

T2 S 2.743 0.318 0.122 2.743 0.953
T2 B 5.486 0.635 0.228 5.486 1.905

m

i

n

n

m

m

m

i

1.466

2.934

u

m

n

0.732

1.466

w

0.762
1.524

0.762
1.524

0.762
1.524

w

w

m

m

w

w

1.143

2.286

1.143
2.286

0.635
1.270

0.635
1.270

o

m

1.524
3.048

0.826
1.651

Table I Physical dimensions of the ten groups of dendrite models. All dimensions
are in units of 10-_ meters.
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Model M D T Um Kw d/de (Re)eq K ar KS

10-3 kg 10-s N °C 10-2 m/s 10-2 m

U0A SL 0.706 42.12 24.7 0.140 1.028 0.0130 0.0066 1.026 0.546 0.877
U0A SH 0.918 280.16 24.7 0.995 1.028 0.0130 0.0451 1.030 0.538 0.927
U0A BL 5.660 365.39 24.7 0.596 1.059 0.0266 0.0602 1.063 1.091 0.892
U0A BH 7.487 2256.00 24.7 3.573 1.059 0.0266 0.3760 1.089 1.084 0.881

U0B SL
U0B SH
U0B BL
U0B BH

UI SL
U1 BL

U2 SL
U2 SH
U2 BL

.U2 BH

U3 SL
U3 SH
U3 BL
U3 BH

T0A SL
T0A SH

T0B BL
T0B BH

T0C SL
T0C SH
T0C BL
T0C BH

TI SL
TI SH
T1 BL
T1 BH

T2 SL
T2 SH
T2 BL
T2 BH

0.201 10.78 23.1 0.049 1.014 0.0066 0.0016 1.011 0.360 0.814
0.279 87.19 23.1 0.391 1.014 0.0066" 0.0134 1.012 0.360 0.796
1.606 99.92 23.1 0.214 1.028 0.0130 0.0146 1.023 0.718 0.765
2.214 690.62 23.1 1.497 1.028 0.0130 0.1070 1.033 0.718 0.783

0.838 43.10 24.7 0.142 1.067 0.0297 0.0069 1.066 0.580 0.836
6.635 374.20 24.7 0.576 1.144 0.0598 0.0062 1.148 1.154 0.835

0.919 50.94 23.1 0.128 1.067 0.0297 0.0075 1.066 0.597 0.781
1.211 362.45 24.7 0.977 1.067 0.029? 0.0593 1.070 0.591 0.804
7.275 414.37 23.1 0.528 1.144 0.0598 0.0611 1.148 1.190 0.846
9.928 2966.20 24.7 3.622 1.144 0.0598 0.4800 1.163 1.193 0.798

1.134 63.67 25.4 0.154 1.073 0.0323 0.0104 1.073 0.641 0.774
1.528 456.49 24.7 1.117 1.073 0.0323 0.0748 1.076 0.639 0.793
9.331 470.21 24.7 0.547 1.157 0.0648 0.0744 1.164 1.296 0.826
12.55 3736.20 24.7 3.883 1.157 0.0648 0.6120 1.182 1.290 0.746

3.684 224.33 24.7 0.389 1.089 0.0387 0.0420 1.088 0.909 0.809
5.066 1494.80 24.7 2.540 1.089 0.0387 0.2400 1.099 0.955 0.840

15.49 984.50 24.7 0.833 1.189 0.0760 0.1620 1.194 1.527 0.728
21.22 6409.50 24.7 5.273 1.189 0.0760 1.0300 1.230 1.534 0.731

0.553 29.39 23.1 0.065 1.089 0.0387 0.0042 1.086 0.505 0.592
0.756 227.26 23.1 0.499 1.089 0.0387 0.0350 1.087 0.505 0.586
4.410 244.90 23.1 0.247 1.189 0.0760 0.0340 1.176 1.007 0.582
6.068 1860.20 23.1 1.889 1.189 0.0760 0.2600 1.179 1.008 0.587

0.561 31.35 25.4 0.076 1.081 0.0355 0.0052 1.078 0.507 0.623
0.778 222.37 24.7 0.520 1.08I 0.0355 0.0360 1.080 0.514 0.611
4.412 232.16 25.4 0.255 1.173 0.0704 0.0395 1.176 1.009 0.606
6.066 1746.60 24.7 1.972 1.I73 0.0704 0.2800 1.180 1.017 0.639

0.752 42.12 25.4 0.087 1.096 0.0415 0.0069 1.094 0.559 0.588
1.040 297.80 24.7 0.614 1.096 0.0415 0.0462 1.096 0.566 0.603
5.847 318.37 25.4 0.292 1.206 0.081! 0.0519 1.212 1.108 0.572

7.880 2316.70 24.7 2.077 1.206 0.0811 0.3760 1.215 1.107 0.568

Re

0.00306
0.02139
0.02679
0.15955

0.00068
0.00538
0.00594
0.04167

0.00411
0.03556

0.00308
0.02398
0.02707
0.19209

0.00419
0.02979
0.03189
0.22546

0.01498
0.10267

0.05884
0.37400

0.00134
0.01033
0.01115
0.08530

0.00166
0.01122
0.01194
0.09153

0.00210
0.01481
0.01541
0.10777

Table II Experimental data for determining blockage and inertia corrections, Reynolds number
and settling speed ratio. Here the values of a r were determined from buoyancy measurements.
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Model

U0A SL
U0A SH
U0A BL
U0A BH

U0B SL
U0B SH
U0B BL
U0B BH

UI SL
UI BL

U2 SL
U2 SH

U2 BL
U2 BH

U3 SL
U3 SH
U3 BL
U3 BH

TOA SL
TOA SH

T0B BL
T0B BH

T0C SL
T0C SH
T0C BL
T0C BH

TI SL
TI SH
TI BL
TI BH

T2 SL
T2 SH
T2 BL
T2 BH

l/a V A ar Ls ar/L s D Re KS Ca

(ave.) 10-6 m 3 10-4 m2 10 -2 m 10-2 m (ave.) (@ T r) (@T r) (ave.)

3.60 0.637 4.434 0.534 0.431 1.248 42.06 0.00306 0.894 1.108
0.637 4.434 0.534 0.431 280.11 0.02137
5.429 18.789 1.090 0.867 364.91 0.02676
5.429 18.789 1.090 0.867 2255.57 0.15933

8.00 0.193 2.534 0.358 0.228 1.570 10.76 0.00073 0.790 1.283
0.193 2.534 0.358 0.228 87.17 0.00574
1.542 10.134 0.717 0.456 99.78 0.00634
1.542 10.134 0.717 0.456 690.49 0.04439

3.80 0.796 7.025 0.575 0.340 1.697 43.10 0.00411 0.836 1.178
6.457 28.581 1.155 0.678 374.20 0.03555

3.80 0.859 7.557 0.590 0.341 1.735 50.86 0.00328 0.807 1.210
0.859 7.557 0.590 0.341 362.38 0.02395
7.014 30.796 1.188 0.683 413.75 0.02884
7.014 30.796 1.188 0.683 2965.63 0.19182

4.40 1.089 10.187 0.638 0.321 1.995 63.58 0.00406 0.785 1.239
1.089 10.187 0.638 0.321 456.40 0.02975
8.947 41.667 1.288 0.644 469.41 0.03185
8.947 41.667 1.288 0.644 3735.43 0.22514

2.67 3.529 15.104 0.944 0.701 1.347 224.05 0.01497 0.825 1.203
3.529 15.104 0.944 0.701 1494.56 0.10253

4.00 14.80 47.119 1.523 0.942 1.616 983.19 0.05876 0.730 1.377
14.80 47.119 1.523 0.942 6408.24 0.37348

8.00 0.533 6.745 0.503 0.237 2.122 29.34 0.00144 0.587 1.688
0.533 6.745 0.503 0.237 227.22 0.01101
4.263 26.981 1.006 0.474 244.53 0.01189
4.263 26.981 1.006 0.474 1859.90 0.09088

7.40 0.539 7.817 0.505 0.207 2.438 31.30 0.00161 0.620 1.643
0.539 7.817 0.505 0.207 222.32 0.01121
4.278 31.039 1.007 0.413 231.79 0.01157
4.278 31.039 1.007 0.413 1746.25 0.09141

8.64 0.713 11.733 0.554 0.184 3.007 42.06 0.00204 0.583 1.708
0.713 11.733 0.554 0.184 297.73 0.01479
5.619 45.876 1.103 0.367 317.87 0.01494
5.619 45.876 1.103 0.367 2316.27 0.10762

Table III Reduced data for determining the drag versus Reynolds number curves and

average values of the dendrite shape parameter, settling speed ratio and zero Reynolds
number drag coefficient. Here all the geometrical properties in columns I-6 were determined
using the measured physical dimensions in Table I and the surface area and volume formulae
derived in Appendix B.
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Fig. I Six configurations of model dendrite fragments patterned after postsolidification

microstructures. U designates the uniaxial series and T designates the triaxial

series, and the following number denotes the number of secondary branch

systems. All elements comprising the dendrite models are cylindrical rods with

rounded hemispherical ends.
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Fig. 5 Settling speed ratio versus dimensionless shape parameter for ten self-similar

dendrite groups. Circles and triangles correspond to uniaxial and triaxial dendrite

models, respectively, and the open symbols refer to branehless dendrites while the

closed symbols denote branched systems. Error bars represent the rms deviation

of repeated measurements.
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Fig. 6 Zero Reynolds number drag coefficient versus dimensionless shape parameter for

ten self-similar dendrite groups. See Fig. 5 for symbol definition.
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Fig. 7 Drag coefficient obtained from the slope of drag curves in Fig. 4 at zero Reynolds

number plotted against the inverse settling speed ratio obtained using the inertial

correction procedure of Lasso & Weidman.OS] See Fig. 5 for symbol definition.
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Oblique views of orthogonallyintersectingcylindricalrods; (a) primary rod of

radius R2 intersectedby two smaller rods of radiiRI. and Co)three orthogonally
intersectingcylindersof equal radius R2.
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